25 research outputs found

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    經濟學全集「統計學」を讀む

    Get PDF
    39 pages, 11 captioned figures, 8 tables (5 of them in Appendix A), authors from page 33, submitted to JHEP, figures at http://aliceinfo.cern.ch/ArtSubmission/node/2359 ; see paper for full list of authorsInternational audienceThe measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV with the ALICE detector at the LHC is reported. D0^0, D+^+ and D+^{*+} mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range 0.96<ycms<0.04-0.96< y_{\mathrm{cms}}<0.04 and transverse momentum interval 1<pT<241<p_{\rm T}<24 GeV/cc. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D0^0, D+^+ and D+^{*+} are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured pTp_{\rm T} regions and event classes. The relative D-meson yields, calculated in various pTp_{\rm T} intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at s=7\sqrt{s}=7 TeV as well as with EPOS~3 calculations
    corecore